

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 27 (2007) 3445–3452

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric properties of $CeO_2-0.5AO-0.5TiO_2$ (A = Ca, Mg, Zn, Mn, Co, Ni, W) ceramics

Prabhakaran Sreekumari Anjana^a, Mailadil Thomas Sebastian^a, Anna-Karin Axelsson^{b,*,1}, Neil McN. Alford^b

^a Materials & Minerals Division, National Institute of Interdisciplinary Science and Technology, Trivandrum 695019, India ^b Physical Electronics & Materials, London South Bank University, London SE1 0AA, UK

> Received 9 October 2006; received in revised form 8 January 2007; accepted 12 January 2007 Available online 6 April 2007

Abstract

Microwave dielectric ceramic materials based on cerium [CeO₂–0.5AO–0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co, Ni, W)] have been prepared by a conventional solid state ceramic route. The crystal structure was studied by X-ray diffraction, microstructure by scanning electron microscopy (SEM) techniques and the phase composition was studied using energy dispersive X-ray analysis (EDXA). The sintered ceramics had a relative dielectric constant (ε_r) in the range 17–65 and quality factor $Q_u xf$ up to 50,000 GHz and a temperature variation of resonant frequency (τ_f) ranging from a negative value (-62 ppm/°C) to a high positive value (+399 ppm/°C). The majority of the synthesized ceramics were of a two phase composite consisting of a fluorite CeO₂ and perovskite ATiO₃ phase. The microwave dielectric properties were further tailored by adding various amounts of dopants of different valencies to the calcined powder. This made it possible to either tune τ_f to zero or improved the quality factor further.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Powders-solid state reaction; Dielectric properties; CeO2; Microwave dielectrics

1. Introduction

The recent growth in wireless communication systems has caused an increasing demand for temperature stable low loss dielectric materials. Considerable attention has also been paid to the miniaturization of devices in telecommunication infrastructure. A dielectric resonator (DR) is a ceramic puck with high dielectric constant ($\varepsilon_r > 20$), low dielectric loss or high quality factor ($Q_u > 2000$) where Q_u is the unloaded quality factor of the ceramic and a near zero temperature coefficient of resonant frequency ($\tau_f < \pm 20$ ppm/°C) at microwave frequencies.¹ Although a large number of microwave ceramics have been developed,² the search continues for new materials with optimum properties. Reference 2 gives a list of dielectric resonator materials with properties reported in the literature. The important applications of ceria-based materials include use in oxygen-permeation membrane systems, fuel cells and catalytic wet oxidation and exhaust combustion catalysts.^{3–5} Ceria is a good dielectric resonator material with $\varepsilon_r = 23$, quality factor ($Q_{\rm u}xf$) of about 60,000 GHz and $\tau_{\rm f}$ of -53 ppm/°C.⁶ However, it has a relatively high negative $\tau_{\rm f}$, which precludes its immediate practical application. It is possible to tailor the properties of CeO₂ by suitable substitution and by the formation of mixed phases having opposite τ_f . Cerium oxide has three phases: CeO₂ with the CaF₂ structure and hexagonal and cubic Ce₂O₃ categorized as the A-type and C-type structures, respectively in rare earth oxides.7 CeO₂ easily forms solid solutions with other rare-earth elements and with elements belonging to the transition-metal series. Among rare-earth elements, CeO₂-Ln₂O₃ (Ln = La, Pr, Sm, Gd and Tb) systems have been extensively investigated and their effects have been closely monitored.^{8,9} Regarding transition/non-transition elements, CeO_2 easily forms solid solutions with ZrO_2 ,¹⁰ PbO₂,¹¹ CuO,¹² MnO,¹³ TiO₂,^{14,15} Al₂O₃¹⁶ and SiO₂^{17,18} and each has its own uniqueness. Sebastian et al. reported¹⁹ that CeO_2 also forms solid solution with Sm_2O_3 . The ability to substitute one cation for another in a particular structure

^{*} Corresponding author. Tel.: +44 2078156467; fax: +44 2078157699.

E-mail address: a.k.axelsson@imperial.co.uk (A.-K. Axelsson).

¹ Formerly Regional Research Laboratory.

^{0955-2219/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2007.01.009

is dependent on several factors, such as ionic size of the host/guest cation and the crystallographic structural features of the materials.^{20,21} In the present paper we examine the dielectric properties of CeO₂ together with another flexible and interesting dielectric ceramic, TiO₂, in a novel group of ceria-titania based mixed system such as CeO₂–0.5CaO–0.5TiO₂ (CCaT), CeO₂–0.5MgO–0.5TiO₂ (CMgT), CeO₂–0.5ZnO–0.5TiO₂ (CZnT), CeO₂–0.5MnO–0.5TiO₂ (CMnT), CeO₂–0.5CoO–0.5TiO₂ (CCoT), CeO₂–0.5NiO–0.5TiO₂ (CNiT) and CeO₂–0.5WO₃–0.5TiO₂ (CWT). To further optimize the dielectric properties, small amount of dopants were added to the calcined powder before sintering.

2. Experimental

The samples of CeO_2 -0.5AO-0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co, Ni, W) were prepared by the conventional solidstate ceramic route. High purity chemicals CeO₂ (IRE, 99.99%), TiO₂ (Aldrich, 99.9%), CaCO₃ (Aldrich, 99+%), Mg(CO₃)₄Mg(OH)₂·5H₂O (Aldrich, 99%), ZnO (Aldrich, 99.9%), MnCO₃ (Aldrich, 99.9+%), Co₃O₄ (Aldrich), NiO (Aldrich, 99%), WO₃ (Aldrich, 99+%) were used as starting powders. Stoichiometric proportions of the chemicals were weighed and ball milled for 24 h using zirconia balls in distilled water media. The slurry was dried and then calcined for 10 h at 1150 °C for Ca, Mg and Zn based and at 1050 °C for Mn, Co, Ni and W based ceramics respectively. The calcined powders were then ball milled for 3 days. Depending on the A site atom, suitable dopants of various valencies were added and again ground well in an agate mortar. The fine powder is then pressed into disc shaped pucks of 14 mm diameter and about 7 mm height at a pressure of about 120 MPa using a WC coated die. The green compacts were fired at a rate of 5 °C/min up to 800 °C and soaked at 800 °C for 30 min to expel the binder. The pellets were sintered in air at temperatures in the range between 1130 and 1550 °C depending on the A site atom and the dwell time was 2 h. After sintering the samples were allowed to cool down to room temperature at the rate of 3 °C/min. The samples were then polished to remove surface irregularities. The densities of the samples were measured by noting the mass and the dimensions. X-ray diffraction patterns were recorded from powdered samples using Cu K α radiation (Philips) and SEM micrographs recorded from the surface of thermally etched samples (Hitachi SEM S-4300). Raman spectra from the sintered pucks were recorded using a Renishaw system 2000 microprobe with a 488 nm line of an Ar⁺ laser as exciting radiation with nominally <4 mW power incident on the sample surface. The laser line was focused onto the sample by a cylindrical microscope lens of $50 \times$ magnification with a spot diameter of $3 \pm 1 \,\mu$ m. Dielectric properties at microwave frequencies were measured by resonance method using a Network Analyzer (Agilent 8753 ET). The specimen was placed on a low loss quartz spacer of height 8 mm inside a copper cavity of inner diameter 40 mm and height 22 mm whose inner side was silver plated. The use of low loss single crystal quartz spacer reduces the effect of losses due to the surface resistivity of the cavity. The $TE_{01\delta}$ mode was used for the microwave measurements.²² The coefficient of temperature variation of resonant frequency was

measured by noting the temperature variation of $TE_{01\delta}$ resonant mode in the temperature range 25–70 °C. Dielectric properties in the range of -253 to 37 °C were measured by placing the copper cavity on the cold head of a closed cycle Gifford McMahon cryocooler ("workhorse", Cryophysics, Abingdon, UK) were an in-house made software calculated permittivity, unloaded Q and resonance frequency over temperature.

3. Results and discussion

The CeO₂-0.5AO-0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co, Ni, W) green compacts were sintered into dense ceramics except those based on tungsten, which were difficult to sinter. Fig. 1 shows the X-ray diffraction pattern recorded from CeO₂-0.5AO-0.5TiO₂ (A=Mg, Zn, Ca, Mn, Co, Ni, W) dielectric ceramics using Cu K α radiation. The powder diffraction pattern confirm that majority of the CeO₂-0.5AO-0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co, Ni) ceramics consists of two phases namely fluorite CeO₂ and perovskite ATiO₃. Careful analysis of the X-ray diffraction pattern show that CeO₂ peaks nearly coincide with some of the peaks of $ATiO_3$ (A = Mg, Zn, Ca, Mn, Co, Ni). In the ceramic with tungsten, CWT, several phases were formed such as CeO₂, Ce_2WO_6 and $Ce_2Ti_2O_7$. Bijumon et al.²³ reported that in the case of $Ce(Ti_{0.5}W_{0.5})O_4$, which can be related to the ratio of atoms used here, a multiphase composite containing $Ce_2Ti_2O_7$, Ce₂WO₆, TiO₂ and CeO₂ was formed. Fig. 2 shows the SEM micrographs of sintered and polished CeO₂-0.5AO-0.5TiO₂ (A=Ca, Mg, Zn, Mn, Co) ceramics revealing a highly dense product. The microstructure changes with change in the 'A' atom in CeO₂-0.5AO-0.5TiO₂ (A = Ca, Mg, Zn, Mn, Co) and it shows clearly two types of grains which were later proven to belong to CeO₂ and ATiO₃. The average grain size of sintered pure CeO₂ is rather large (>10 μ m). In these CeO₂–ATiO₃ composites we found much smaller CeO₂ grain sizes varying from 2 µm in the CCaT (Fig. 2a) to 10 µm in CMgT (Fig. 2b). In all cases, the formed perovskite phase had smaller grain size then CeO₂. The

Fig. 1. XRD pattern of CeO₂–0.5AO–0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co, Ni, W) ceramics. \times , ATiO₃ (A = Mg, Zn, Ca, Mn, Co, Ni); \blacktriangle , Ce₂WO₆; \bigoplus , Ce₂Ti₂O₇.

Fig. 2. SEM micrographs of (a) $CeO_2-0.5CaO-0.5TiO_2$, (b) $CeO_2-0.5MgO-0.5TiO_2$, (c) $CeO_2-0.5ZnO-0.5TiO_2$, (d) $CeO_2-0.5MnO-0.5TiO_2$, and (e) $CeO_2-0.5CoO-0.5TiO_2$.

CeO₂ grains are polygonal shaped with bright contrast and the smaller ATiO₃ (A = Mg, Zn, Ca, Mn, Co) grains with dark contrast and have well defined grain boundaries. An example of EDXA analysis in Fig. 3 confirms the earlier XRD results that there are two major phases of ATiO₃ and CeO₂. This result was dominating in all seven ceramic systems. Fig. 4 shows the Raman spectrum of CeO₂–0.5AO–0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co, Ni, W). The mode at 463 cm⁻¹ is the characteristic CeO₂ mode which is linked to the Ce–O8 vibration. If ions are substituted into the fluorite structure the line width (FWHM) of the mode and a mode shift will be observed.¹⁹ Here we see clearly that there is no such change. This is yet another confirmation that the CeO₂ is intact as one of the phases. Where possible, ATiO₃ standards where compared with the CAT to prove the existence of the perovskite phase.

Table 1 gives the sintering temperature, microwave dielectric properties (ε_r , $Q_u xf$, τ_f) of CeO₂–0.5AO–0.5TiO₂ ceramics. The different ceramics possess fairly high dielectric constant in the range 17.0–65.5 and quality factor $Q_u xf$ from 9500 to 50,000 GHz. The CCaT has the highest dielectric constant of $\varepsilon_r = 65.5$ and CWT has the lowest at $\varepsilon_r = 17$. The CCaT has a high τ_f of +399 ppm/°C which is due to the high positive τ_f of CaTiO₃ (+800 ppm/°C) compared with the other ATiO₃ (A = Mg, Zn, Co, Ni, Mn) ceramics, which have negative τ_f . CCaT and CWT have a positive τ_f while CMgT, CZnT, CCoT, CNiT and CMnT have negative τ_f . The sintering temperature of the CeO₂–ATiO₃ composite ceramics are in the range from 1130 to 1550 °C which is lower than pure CeO₂ and pure ATiO₃. The low sintering temperature of CWT though is due to the formation of low melting Ce₂WO₆ phase.

Spectrum 1

Element	Atomic%
0	67.29
Mg	17.66
Ti	15.06

<u>Element</u>	Atomic%		
<u>0</u>	<u>67.20</u>		
Ce	<u>32.80</u>		

Fig. 3. EDXA of CMgT composite proving two separate phases of CeO₂ and MgTiO₃.

Fig. 4. Raman spectra of CeO₂-0.5AO-0.5TiO₂ (A = Ca, Mg, Mn, Zn, Co, Ni, W) ceramics.

Table 1 The dielectric properties of CeO₂–0.5AO–0.5TiO₂ (A = Ca, Mg, Mn, Zn, Co, Ni, W) ceramics

Material	Sintering temperature (°C)	Density (g/cm ³)	$\varepsilon_{ m r}$	$Q_{\rm u} x f ({\rm GHz})$	$\tau_{\rm f}~({\rm ppm/^{\circ}C})$
CeO ₂ -0.5CaO-0.5TiO ₂	1550	5.81	65.5	9,500	399
CeO ₂ -0.5MgO-0.5TiO ₂	1400	5.73	22.4	17,500	-62
CeO ₂ -0.5ZnO-0.5TiO ₂	1250	6.19	26.1	24,100	-43
CeO ₂ -0.5MnO-0.5TiO ₂	1200	6.07	26.3	17,100	-30
CeO2-0.5CoO-0.5TiO2	1200	6.20	22	50,000	-47
CeO ₂ -0.5NiO-0.5TiO ₂	1200	5.39	18	25,300	-58
CeO ₂ -0.5WO ₃ -0.5TiO ₂	1130	5.45	17	45,500	7

The density of a mixture of two phases can be calculated using the equation:

$$\rho_{\text{mixture}} = V_1 \rho_1 + V_2 \rho_2 \tag{1}$$

where V_1 and V_2 are the volume fraction, ρ_{mixture} the calculated theoretical density and ρ_1 and ρ_2 are the densities of the two components. The empirical model proposed for predicting dielectric constant of mixtures is as follows:²⁴

$$\ln \varepsilon_{\rm r,mixture} = V_1 \ln \varepsilon_{\rm r1} + V_2 \ln \varepsilon_{\rm r2} \tag{2}$$

where ε_{r1} and ε_{r2} are the dielectric constant of two materials and $\varepsilon_{r,mixture}$ is the dielectric constant of the mixed phase ceramic. To calculate the τ_f of mixtures, an empirical model was proposed as follows:²⁵

$$\tau_{\rm f,mixture} = V_1 \tau_{f1} + V_2 \tau_{f2} \tag{3}$$

where τ_{f1} and τ_{f2} are the temperature coefficient of resonant frequencies of the two components and $\tau_{f,mixture}$ is the resultant temperature coefficient of resonant frequency of the mixture. Table 2 shows the dielectric properties of the perovskite ATiO₃ (A = Ca, Mg, Zn, Mn, Co, Ni) ceramics that we are suggesting as the secondary phase here.^{2,26}

By using the Eqs. (1)–(3) and CeO₂ and ATiO₃ as the two phases, values of density, ε_r and τ_f were calculated and compared with experimental results, see Fig. 5. The experimental values of bulk density do not show much variation from the values calculated using mixture relation. The dielectric constant and τ_f shows very good agreement between experimental and values derived from mixture rule except in the case of CCaT ceramics. This is yet another confirmation that CeO₂–0.5AO–0.5TiO₂ (A = Ca, Mg, Zn, Mn, Co, Ni) ceramics is a mixture of CeO₂ and ATiO₃ phases.

When the seven initial CeO₂–0.5AO–0.5TiO₂ mixtures were microscopically analyzed, dopants such as WO₃, MoO₃, Nb₂O₅, Sb₂O₃, La₂O₃, Nd₂O₃, Bi₂O₃, SnO₂, MnO, CeO₂, Cr₂O₃ and Fe₂O₃ were added to tune their dielectric properties. In the CCaT (CeO₂–CaTiO₃) system, addition of 0.5 mol% Fe₂O₃ and 0.5 mol% CeO₂ slightly improved the quality factor of CCaT from 9500 to 10,500 GHz but no other major changes. However, small addition of Cr₂O₃, Fe₂O₃ and MnO tuned the $\tau_{\rm f}$ to 0, +22 and +35 ppm/°C from the originally 399 ppm/°C, respectively. The ionic radius of Cr³⁺ (0.615 Å), Fe³⁺ (0.55 Å) and Mn²⁺ (0.67 Å) are comparable to the ionic radius of Ti⁴⁺ (0.605 Å).²⁷ Hence Cr³⁺, Fe³⁺ and Mn²⁺ may diffuse into the Ti⁴⁺ site. Fig. 6

Table 2 Microwave dielectric properties of ATiO₃ (A = Ca, Mg, Zn, Mn, Co, Ni) and CeO_2

Material	Theoretical density (g/cm ³)	ε _r	$Q_{\rm u} x f({\rm GHz})$	$\tau_{\rm f} ({\rm ppm}/^{\circ}{\rm C})$
CaTiO ₃	4.04	170	12,900	800
MgTiO ₃	3.89	17	20,780	-50
ZnTiO ₃	5.17	21	19,000	-50
MnTiO ₃	4.60	24.3	15,200	-56
CoTiO ₃	4.52	19.8	37,500	-49
NiTiO ₃	5.10	19.7	13,900	-51
CeO ₂	7.2	23	60,000	-53

Fig. 5. Calculated and measured values of density, permittivity (ε_r) and temperature coefficient of frequency (τ_f) for suggested CeO₂–ATiO₃ (A = Mg, Zn, Ca, Mn, Co, Ni) composites.

shows the variation of τ_f with concentration of Cr_2O_3 , Fe_2O_3 and MnO dopants in the CCaT composite.

Next we examined the CeO₂–0.5MgO–0.5TiO₂ (CMgT). The CMgT ceramics has $\varepsilon_r = 22.4$, $Q_u x f = 17,500$ GHz and $\tau_f = -62$ ppm/°C. Small addition of WO₃, MoO₃, Sb₂O₃, Fe₂O₃ and MnO (all under 4 mol%) increased the quality factor. Titanium based ceramics have a Ti⁴⁺ oxidation state. It has been reported²⁸ that heating at high temperatures in air will lead to a reduction of Ti⁴⁺ to Ti³⁺. This reduction is well known to increase the dielectric loss.²⁹ Hence the addition of oxidizing agents such as WO₃, MoO₃, Sb₂O₃, Fe₂O₃ and MnO might be expected to maintain a high quality factor. A quality factor $Q_u x f = 90,000$ GHz was found for the addition of only 1 mol% WO₃ to the CMgT composite with a $\varepsilon_r = 21.4$ and $\tau_f = -50$ ppm/°C. By adding another 1 mol% TiO₂ to this system a $Q_u x f$ of 87,700 GHz with $\varepsilon_r = 21.3$ and slightly improved

Fig. 6. Tuning of τ_f towards zero in the CeO₂–CaTiO₃ composite using different amount of Cr₂O₃, Fe₂O₃ and MnO dopant.

 $\tau_{\rm f} = -48 \text{ ppm/}^{\circ}\text{C}$ was produced. Similarly, addition of 1 mol% MoO₃ and 2 mol% TiO₂ gave a $Q_{\rm u}xf$ =60,250 GHz. Although the quality factor is considerably improved by small amount of dopants there is not much improvement in either the dielectric constant or $\tau_{\rm f}$.

The CeO₂–0.5ZnO–0.5TiO₂ (CZnT) has Q_uxf =24,100 GHz, ε_r =26.1 and τ_f =-43 ppm/°C. Additions of 4 mol% Co₃O₄ improve the quality factor of CZnT ceramics to 33,100 GHz but there is a decrease in ε_r and τ_f . Co²⁺ (0.65 Å) is having an ionic radius comparable to that of Ti⁴⁺ (0.605 Å) and hence partial substitution of Co in Ti site may be the reason for the increase in quality factor. All other dopants such as WO₃, MoO₃, Sb₂O₃, Fe₂O₃, MnO, Nb₂O₅, V₂O₅, Nd₂O₃, Cr₂O₃, ZrO₂, Ta₂O₅, La₂O₃, Bi₂O₃, SnO₂ deteriorate the properties of CZnT ceramics. None of the dopants increased the dielectric constant or tuned the τ_f .

CMnT ceramics have originally $\varepsilon_r = 26.3$, $Q_u xf = 17,100$ GHz and $\tau_f = -30 \text{ ppm/}^\circ\text{C}$. In the case of CMnT ceramics only an excess addition of MnO improved the quality factor to 20,350 GHz. The enhancement in quality factor with Mn²⁺ doping may be due to a charge compensation mechanism that takes place in dielectric materials involving Ti (Mn²⁺ + Ti⁴⁺ \Leftrightarrow Mn³⁺ + Ti³⁺).³⁰ However addition of WO₃, MoO₃, Sb₂O₃, Nd₂O₃, Nb₂O₅ and Ta₂O₅ considerably improved the τ_f . By the addition of 2 mol% WO₃ and 2 mol% Nd₂O₃ the dielectric constant increased from 26.3 to 40.6 and 37.9, respectively. The τ_f is improved from -30 to +2 ppm/°C by the addition of only 0.5 mol% Sb₂O₃, -14 ppm/°C by the addition of 0.5 mol% Nd₂O₃ and -5 ppm/°C by 1 mol% MoO₃. In all three cases the $Q_u xf$ decreased by more than half.

For the CCoT system with starting values of $\varepsilon_r = 22$, $Q_u x f = 50,000 \text{ GHz}$ and τ_f of $-47 \text{ ppm/}^\circ\text{C}$ an addition of 0.6 mol% of WO₃ increased the $Q_u x f$ to as high as 70,000 GHz with an improvement in τ_f (from $-47 \text{ to } -30 \text{ ppm/}^\circ\text{C}$). In a similar way, addition of TiO₂ tuned the τ_f to positive value. Addition of 8 mol% TiO₂ increased $Q_u x f$ to 62,550 GHz. By combining these two dopants, 0.3 mol% WO₃ and 16 mol% TiO₂, a $Q_u x f$ of 58,150 GHz, $\varepsilon_r = 21.2$ and $\tau_f = +5 \text{ ppm/}^\circ\text{C}$ was obtained. Ionic radius of W⁶⁺ (0.6 Å) and Ti⁴⁺ (0.605 Å) are similar to that of Co²⁺ (0.65 Å). Hence substitution of W⁶⁺ may improved the quality factor of CCoT ceramics by stabilizing the oxidation states of both Ce and Ti.

In CNiT the dielectric properties are $\varepsilon_r = 18$, $Q_u xf = 25,300 \text{ GHz}$ and $\tau_f = -58 \text{ ppm}^\circ\text{C}$. Addition of WO₃, MoO₃, Cr₂O₃ and Sm₂O₃ improve $Q_u xf$ slightly and addition of Ta₂O₅, Bi₂O₃, Fe₂O₃ and WO₃ increased ε_r slightly. Addition of 0.9 mol% MoO₃ tuned τ_f from -58 to $-21 \text{ ppm}^\circ\text{C}$.

The effect of dopants in CWT system showed promising dielectric properties even before addition of dopants with $\varepsilon_r = 17$, $Q_u xf = 45,500$ GHz and $\tau_f = 7$ ppm/°C. This system turned out to be the most complex composite. In all cases, undoped or doped, the CWT system has a low sintering temperature around 1130 °C.

From the doping study, summarized in Table 3, it is clear that CCaT system can be tuned to a $\tau_f = 0 \text{ ppm/}^\circ\text{C}$ with 6.5 mol% Cr₂O₃, CMgTi can be optimized to a high $Q_u xf = 90,000 \text{ GHz}$ with 1 mol% WO₃, CMnTi can be tuned to $\tau_f = +5 \text{ ppm/}^\circ\text{C}$ and CCoTi system shows a great flexibility with W/Ti dopants which makes it possible to improve both $Q_u xf$ and τ_f . The CWT system which initially showed promising dielectric properties but turned out to be of a complex multi phase structure, showed interesting properties with extra amount of CeO₂.

Fig. 7 shows the variation of $Q_{u}xf$ as a function of temperature in the range 30-310 K. The quality factor increased considerably on cooling for CMgT and at 20 K the $Q_{\rm u}$ was as high as 98,000 ($Q_u xf = 539,000 \text{ GHz}$) which is comparable with undoped CeO₂, which has a $Q_u xf$ of 580,000 GHz at 20 K¹⁹. In all samples, the quality factor increased initially on cooling and then on further cooling it decreased at different temperatures depending on the AO material, as shown in Fig. 7. These points occurred at different temperatures in all materials and are also observed in undoped CeO_2 where this anomaly point is at 190 K. The increase in the quality factor at low temperatures is due to many factors, one being the decrease of the damping of lattice vibrations (phonons). This reduces the direct interaction of the incoming dielectric wave with the phonon vibrations. The decrease in quality factor and appearance of anomaly points of some of the CeO₂–0.5AO–0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co,

Table 3

Summary of dielectric properties of CAT composites and their most promising dopants

CAT-dopant	Dopant level (mol%)	$Q_{\rm u} x f({\rm GHz})$	(r	$\tau_{\rm f} (\text{ppm/}^{\circ}\text{C})$
CCaT	_	9,500	65.5	+399
Cr ₂ O ₃	6.5	4,315	35	0
CMgT	_	17,500	22.4	-62
WO ₃	1	90,000	21.4	-50
CZnT	_	24,100	26.1	-43
Co ₃ O ₄	4	33,100	22	-48
CMnT	_	17,100	26.3	-30
MoO ₃	1	5,980	28	-5
CCoT	-	50,000	22	-47
WO ₃	0.6	70,000	21	-30
WO ₃ /TiO ₂	0.3/16	58,200	21.2	+5
CNiT	-	25,300	18	-58
MoO ₃	0.9	27,300	10	-21
CWT	-	45,500	17	+7
CeO ₂	10	53,000	16	+5

Fig. 7. Variation of $Q_u x f$ (GHz) over cryogenic temperatures of the CeO₂-0.5AO-0.5TiO₂ (A = Ca, Mg, Mn, Zn, Co, Ni, W) ceramics.

Ni, W) ceramics may attributed to factors such as oxygen vacancies and other charge defects in the composites, depending on the AO. In one of the cases, $CeO_2-0.5CoO-0.5TiO_2$, the anomaly corresponds to an anomaly of the permittivity which increases at 60 K when cooling, indicates a low temperature phase change.

4. Conclusion

Microwave dielectric ceramics based on a cerium-titania based system $[CeO_2-0.5AO-0.5TiO_2]$ (A = Mg, Zn, Ca, Mn, Co, Ni, W)] were prepared by solid-state reaction method. In the majority of the seven ceramic systems it turned out to be a composite consisting of fluorite CeO₂ and perovskite ATiO₃ with high density and interesting individual dielectric properties depending on the coexisting perovskite being formed. The ceramics have dielectric constants (ε_r) in the range 17.0–65.5 and quality factor $Q_{\rm u}xf$ up to 50,000 GHz. The $\tau_{\rm f}$ ranges from +399 to -62 ppm/°C. X-ray diffraction studies indicated that the $CeO_2-0.5AO-0.5TiO_2$ (A = Mg, Zn, Ca, Mn, Co, Ni) ceramics consists of two types of grains, namely CeO₂ and ATiO₃ in all cases except for CeO2-0.5WO3-0.5TiO2 SEM and EDXA analysis confirms this result. The CeO₂-0.5WO₃-0.5TiO₂ ceramics consists of more than two types of phases-CeO₂, Ce₂WO₆ and Ce₂Ti₂O₇. Suitable dopants of various valencies were added to tune the microwave dielectric properties. It was found that only small amounts of dopants could dramatically alter the dielectric properties such as the CeO₂-0.5CaO-0.5TiO₂ composite doped with 6.5 mol% Cr₂O₃ tuned the $\tau_{\rm f}$ from +399 to 0 ppm/°C. CeO₂-0.5MgO-0.5TiO₂ doped with 1 mol% WO₃ gives a very high $Q_{\rm u}xf$ of 90,000 GHz. The quality factor increased considerably on cooling for CeO_2 -0.5AO-0.5TiO₂ (A = Mg, Zn, Ca, Mn, Co, Ni, W) ceramics in a manner which is similar to pure CeO_2 . Highest $Q_{\rm u}xf$ was observed for the CeO₂-0.5MgO-0.5TiO₂ system and at 20 K reach as high as 98,000 ($Q_{\mu}xf = 539,000 \text{ GHz}$).

References

- 1. Wersing, W. W., Microwave ceramics for resonators and filters. *Curr. Opin. Solid. State. Mater. Sci.*, 1996, **1**, 715–731.
- Sebastian, M.T., Axelsson, A.-K., Alford, N. McN., List of microwave dielectric materials and their properties, web data, http://www.lsbu.ac.uk/dielectric-materials/.
- Bernal, S., Kasper, J. and Trovaralli, A., Recent progress in catalysis by ceria and related compounds. *Catal. Today*, 1999, **50**, 173–174.
- Dikmen, S., Shuk, P. and Greenblatt, M., Hydrothermal synthesis and properties of Ce_{1-x}La_xO_{2-d} solid solutions. *Solid State Ionics*, 1999, **126**, 89–95.
- Sato, T., Dosaka, K., Ishitsuka, M., Haga, E. M. and Okuwai, A., Sintering behaviour of ceria-doped tetragonal zirconia powders crystallized and dried using supercritical alcohols. *J. Alloys Compd.*, 1993, 193, 274–276.
- Santha, N., Sebastian, M. T., Mohanan, P., Mc, N., Alford, N., Sarma, K., Pullar, R. C., Kamba, S., Pashkin, A., Samukhina, P. and Petzelt, J., Effect of doping on the dielectric properties of cerium oxide in the microwave and far–infrared frequency range. J. Am. Ceram. Soc., 2004, 87(7), 1233–1237.
- 7. Adachi, G. and Imanaka, N., The binary rare earth oxides. *Chem. Rev.*, 1998, **98**, 1479–1514.
- Shuk, P., Greenblatt, M. and Croft, M., Hydrothermal synthesis and properties of mixed conducting Ce_{1-x}Tb_xO_{2-δ} solid solutions. *Chem. Mater.*, 1999, **11**(2), 473–479.
- Miki, T., Ogawa, T., Haneda, M., Kakuta, N., Ueno, A., Tateishi, S., Matsuura, S. and Sato, M., Enhanced oxygen storage capacity of cerium oxides in cerium dioxide/lanthanum sesquioxide/alumina containing precious metals. *J. Phys. Chem.*, 1990, **94**(16), 6464–6467.
- Yashima, M., Arasi, H., Kakihana, M. and Yoshimura, M., Raman scattering study of cubic-tetragonal phase transition in Zr_{1-x}Ce_xO₂ solid solution. *J. Am. Ceram. Soc.*, 1994, **77**(4), 1067–1071.
- Zhang, Y., Andersson, A. and Muhammed, M., Nanophase catalytic oxides: I. Synthesis of doped cerium oxides as oxygen storage promoters. *Appl. Catal. B:Environ.*, 1995, 6, 325–337.
- Lamonier, C., Bennani, A., D'Huysser, A., Aboukais, A. and Wrobel, G., Evidence for different copper species in precursors of copper-cerium oxide catalysts for hydrogenation reactions. An X-ray diffraction, EPR and Xray photoelectron spectroscopy study. J. Chem. Soc. Faraday Trans., 1996, 92(10), 131–136.
- Imamura, S., Shono, M., Okamoto, N., Haneda, A. and Ishida, S., Effect of cerium on the mobility of oxygen on manganese oxides. *Appl. Catal. A: General*, 1996, 142, 279–288.

- Rynowski, J., Farbotko, J., Touroude, R. and Hilaire, L., Redox behaviour of ceria–titania mixed oxides. *Appl. Catal. A: General*, 2000, 203, 335– 348.
- Reddy, B. M., Khan, A., Yamada, Y., Kobayashi, T., Loridant, S. and Volta, J. C., Structural characterization of CeO₂–TiO₂ and V₂O₅/CeO₂–TiO₂ catalysts by Raman and XPS techniques. *J. Phys. Chem. B*, 2003, **107**(22), 5162–5167.
- Usmen, R. K., Graham, G. W., Watkins, W. L. H. and McCabe, R. W., Incorporation of La³⁺ into a Pt/CeO₂/Al₂O₃ catalyst. *Catal. Lett.*, 1994, **30**, 53–63.
- Reddy, B. M., Khan, A., Yamada, Y., Kobayashi, T., Loridant, S. and Volta, J. C., Surface characterization of CeO₂/SiO₂ and V₂O₅/CeO₂/SiO₂ catalysts by Raman, XPS, and other techniques. *J. Phys. Chem. B*, 2002, **106**(42), 10964–10972.
- Bensalem, A., Bozon-Verduraz, F., Delamer, M. and Bugli, G., Preparation and characterization of highly dispersed silica-supported ceria. *Appl. Catal. A: General*, 1995, **121**, 81–93.
- 19. Sebastian, M. T., Santha, N., Bijumon, P. V., Axelsson, A.-K. and Alford, Mc. N., Microwave dielectric properties of $(1 x)CeO_2-xCaTiO_3$ and $(1 x)CeO_2-xSm_2O_3$ ceramics. *J. Eur. Ceram. Soc.*, 2004, **24**(9), 2583–2589.
- Trovarelli, A., Boaro, M., Rocchini, E., de Leitenburg, C. and Doleetti, G., Some recent developments in the characterization of ceria-based catalysts. *J. Alloys Compd.*, 2001, **323**, 584–591.
- 21. Reddy, B. M., Khan, A., Yamada, Y., Kobayashi, T., Loridant, S. and Volta, J. C., Structural characterization of CeO₂–MO₂ (M=Si⁴⁺, Ti⁴⁺, and Zr⁴⁺) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques. *J. Phys. Chem. B*, 2003, **107**(41), 11475–11484.

- Krupka, J., Derzakowsky, K., Riddle, B. and Jarvis, J. B., A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as function of temperature. *Meas. Sci. Technol.*, 1998, 9, 1751–1761.
- Bijumon, P. V., Soloman, S. and Sebastian, M. T., A new group of microwave dielectric ceramics in the RE(Ti_{0.5}W_{0.5})O₄ [RE=Pr, Nd, Sm, Gd, Tb, Dy, and Y] system. J. Mater. Sci.: Mater. Electron., 2003, 14, 5–8.
- Kim, D.-W., Park, J.-H., Chung, J.-H., Hong, K.S., Mixture behaviour and microwave dielectric properties in the low-fired TiO₂–CuO system. 2000, 39, 2696–2700.
- Paladino, A. E., Temperature compensated MgTi₂O₅-TiO₂ dielectrics. J. Am. Ceram. Soc., 1971, 54, 168–169.
- Anjana, P. S. and Sebastian, M. T., Synthesis, characterization and microwave dielectric properties of ATiO₃ (A = Co, Mn, Ni) ceramics. J. Am. Ceram. Soc., 2006, 89, 2114–2117.
- Shannon, R. D., Revised effective ionic radii and systematic study of interatomic distances in halides and chalcogenides. *Acta Crystallogr. A*, 1976, 32, 751–767.
- Penn, S. and Alford, N., Ceramic dielectrics for microwave applications: in handbook of low and high dielectric constant materials and their applications. In *Phenomena, properties and applications*, ed. Hari Singh Nalwa. Academic Press, 1999, pp. 493–532.
- Nomura, S., Toyama, K. and Kaneta, K., Effect of Mn doping on the dielectric properties of Ba₂Ti₉O₂₀ ceramics at microwave frequencies. *Jpn. J. Appl. Phys.*, 1983, **22**, 1125–1128.
- Templeton, A., Wang, X., Pen, S. J., Webb, S. J., Cohen, L. F. and Alford, N. M., Microwave dielectric loss of titanium dioxide. *J. Am. Ceram. Soc.*, 2000, 83, 95–100.